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Abstract

dA sonobuoy field is a random two dimensional array if the signals

from the sensors are coherently processed. The sensor position

coordinates must be estimated to a fraction of a wavelength in order to

coherently process the signals, which is a separate processing task since

the field has a changing random pattern due to drifting of the buoys.

This paper reviews the statistical properties of the maximum likelihood

bearing estimator computed from coherent summation of output signals from

randomly deployed sensors. It is shown that the approximate mean-square

bearing error for a small random array favorably compares with that for a

square array of equally spaced sensors with about one-half the aperture.

The random array is not subject to the aliasing (grating lobes) problem

of an equally spaced array, and a great deal of array gain can be

achieved from a large array of randomly placed sensors. Serious

consideration should be given to tracking the locations of drifting

sonobuoys so as to coherently process them as an array.
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Bearing Estimation using Random Arrays / , o

Melvin J. Hinich

Introduction

A sonobuoy field is a random two dimensional array if the signals

from the sensors are coherently processed (Thorn, Booth, and Lockwood

[11). The sensor position coordinates must be estimated to a fraction of copy,

a wavelength in order to coherently process the signals, which is a 2

separate processing task since the field has a changing random pattern

due to drifting of the buoys. It is technically feasible to track the

pattern, but the processing gain from such an effort must be perceived as

sufficiently great to justify such an effort. This paper reviews the

statistical properties of the maximum likelihood bearing estimator

computed from coherent summation of output signals from randomly deployed

sensors. Stochastic properties of the array response function are

discussed by Thorn, et. al. and Steinberg [21.

The signal received at a sensor from a distant acoustic source in a

horizontally homogeneous ocean is a plane wave plus ambient noise (Clay

and Medwin, [3]). Using complex variable notation, a single frequency

plane wave at point (xl,x2) and time t is

p(t,x) - A expti2nTf(t-(xl cos0o + x2 sin8o)/c)]

where 00 is the horizontal direction of propagation with respect to the

x-axis, c is the phase velocity, fo is the wave's frequency (the

wavelength is X o - c/fo) and A is the complex amplitude. This amplitude

will be assumed to be a constant for the expositon of coherent
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processing, but actual signals will have some amplitude and phase

modulation which reduces the signal coherence across the array. A

reduction of coherence results in an increase in the mean square error of

bearing computed from any of the coherent processing methods discussed

next.

1. Coherent Processing

The most widely used coherent processing technique is delay-and-sum

beamforming. Suppose that the signal received by the kth sensor in a

horizontal planar array is s(t,Xk) - p(t,X) + e(t,X) where e(t,1k) is a

Gaussian noise field at time t and point (xlk,x2k). The usual approach

for beamforming is to compute the beam output signal B(t,OL) =

M
Ek=1s(t+Tk.) for a set of delays Tkt = (xlkcOSOt +x2ksinOZ)/c for

sensors k-l,...,M and beam (look) angles e=1...,N. The energy in beam

OX over a sampling window of length T is jB(01)1 2 where B(61 ) is the

filtered beam signal in a band about fo of bandwidth 1/T. If the plane

wave signal is broadband, then the filter passband is adjusted to the

bandwidth of the signal.

Levin (41 shows that the maximum likelihood estimator of the

propagation angle 0o is the 00 in the interval 0 4 0 < 2n that maximizes

IB(6)1 2. Define

* 2 - * 2

S- M- (Xlk - )2, 2 - - x2) 2  (1.1)
k=I k' .t

whr I M  iM  Miwhere x I = W"Ek-ixlk and X2 = -r Ek-1X2k. Set Ek-l(xlk-x)(X2k-Y) =0
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by a proper rotation of the coordinate system. Then if pMo1 and PMo2 are

large, where p denotes the power signal-to-noise ratio in a narrow band

about fo, then the mean-square error of e0 is given by the approximation

(Hinich [51)

^ ^-2 -2

E(Oo - 6o)2 = (Ao/2i) 2(2pM)-1(a1 sin 2eo + a2 cos260) rad 2. (1.2)

This approximation also holds for a discrete set of beam angles and an

estimator 6N that maximizes JB(0£t)J 2 , provided that the error lay+ I-e0J

is small for all 2. In many applications, however, the bias due to the

discreteness of the 8X is larger than the square-root of the right hand

side of (1.2). It is important in these applications to interpolate

between ON and its adjacent angles.

A simple way to interpolate is to use the frequency-wavenumber

equivalence with beamforming (Hinich [6)). Suppose that s(t,2k) is

passed through the same narrow band filter as was used to produce B(O).

For example, the fast Fourier transform (FFT) can be used to filter

discretely sampled signals to yield the filtered output

N-i
s(2k ) - N-EnO s(nT,2Ek)exp(-i2nmn/N), (1.3)

where T - Nt is the sampling period, T is the sampling interval, and m is

the integer part of foT. Then

M
B(OX)- s(2Ek)expi(K1Xx1k + K21X2k) (1.4)

k-1

where Ki - (2s/,o)cos0 £ and K2 - (21/)o)sin0£. The FFT can be used to

compute (1.4) for as fine a grid as desired by imbedding (!1k) in a square
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lattice of equally spaced points, and adding zeros to expand the two

dimensional array.

From now on it will be assumed that the bearing interpolation is

sufficiently refined and pM is sufficiently large so that expression

(1.2) holds for 60. This expression will now be used to analyze the

ex-ante root mean-square error of 0o, rmse e0 , when the sensor locations

are randomly determined.

2. Gaussian Random Arrays

Suppose that the xlk and X2k are M independent realizations from two

independent Gaussian random variables XI and X2. With no loss of

generality center the origin of the coordinate system so that

2 2 2
X 1 - N(O,ol) and X2 - N(0,o 2), where On is the variance of Xn for n-1,2.

To further simplify the analysis, let o 02 - a.
2M HIt then follows that o- 2 kff1(XZ k - x) 2 and o-2Ekf(x2k - x2)

2 are

2
independent chi-square x M1 variates with M-I degrees of freedom. Denote

2 -i2

OT - Pr(x 2 > T2 ), e.g. 0.99 - Pr(x > 5.2) using a standard chi-square
H-1 15

distribution table. By independence, the probability that

H 1
Ekfl(xlk - xi)2 > (T) 2  

, Ek-l(X2k - x2)2 > (oT) 2

2
is OT, and thus

'-2 2 2

Pr{M-l(a 1 sin2a + 02 cos 2 0) < (aT) - 21 > OT • (2.1)

Applying (2.1) to (1.2) and ignoring the approximation error,
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1/2
mse 6 0 < (X0 /8vp cT) 2 rad2  (2.2)

2

with probability greater than OT. For example if OT 0.99, M - 16,

a - 6Xo, and p = 1/10 (-10 db), then T2 - 5.2 and from (2.2),

rmse 60 < 0.530 with probability greater than 0.98.

It is useful to compare this result with the mean-square error of 60

for a square lattice array whose M=N 2 sensors are at the points

{md,nd:m,n=l,...,N}. Setting L (N-I)d for the length of the square's

sides,

M M
S(x - i)2 = (x~k - 2 )

2  iML2/12. (2.3)

k-l k-l

Thus from (1.2) the mse 0o for the random array is less than that for the

2
square lattice array (with probability greater than OT) if

1/2

L < (12/M) To. (2.4)

For example if M-16 and 6T - 0.99, then the bound is L < 1.98 a. If M

36 and OT - 0.99, T2 - 18.5 and L < 2.48 a.

If the square is centered on the origin rather than at

((N+1)/d,(N+l)/d), the probability that a sensor is in the square is

2
[Pr(IYI < L/2a)] where Y - N(O,1). Thus if L - 4o, this probability is

0.91. Since (0.99)2 - 0.98, it follows from the examples above that

the small Gaussian random array has approximately the same bearing

accuracy as a square lattice array of about one-half the aperture.
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This comparison with the lattice array has been made very

conservative by the selection of aT - 0.99. The rmse 8o for a small

random array will often be as small as a lattice array of equal

aperture.

3. Conclusion

It is shown that the approximate mean-square bearing error for a

random array favorably compares with that for a square array of equally

spaced sensors with about one-half the aperture. The random array is not

subject to the aliasing (grating lobes) problem of an equally spaced

array, and a great deal of array gain can be achieved from a large array

of randomly placed sensors. Serious consideration should be given to

tracking the locations of drifting sonobuoys so as to coherently process

then as an array.
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